![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction Asphalt is a combustible mixture composed of hydrocarbons and relatively nonmetallic derivatives, which is wildly used in road pavement and waterproofing systems [1, 2]. The combustion of asphalt is typically accompanied with a quantity of toxic smoke [3, 4], seriously endangering any personnel within the affected areas. To solve this problem, applying flame retardant to asphalt has become a common way to reduce the hazards associated with pavement during tunnel fires [5–12]. Due to their nontoxic characteristics and their capability for smoke suppression, metal hydroxides are prevalently used to modify the flame resistance of asphalt [7–12]. Among them, hydrated lime did not initially attract the attention of researchers since it decomposes at a relatively high temperature that exceeds the ignition point of asphalt [13]. However, some recent studies have shown different results. Hydrated lime has been proved to promote the formation of a dense inert layer on the asphalt surface by carbonation in the combustion process [7], thus inhibiting the continuous combustion of asphalt, serving as an excellent flame retardant [14]. However, the mechanism of how hydrated lime affects the smoke release of asphalt during combustion requires further study. The smoke release characteristics of asphalt during combustion have been investigated by the combination of a simulated combustion test platform and smoke analyzer. Wu et al. [4] studied the smoke release law of asphalt and binder at a high rate of heating by combining a fixed bed combustion test and infrared spectroscopy. It was observed that the main gaseous products from asphalt combustion include CO2, CO, NO, NO2, and SO2, and that the volatile components of asphalt are the key factors influencing the smoke release rate (RSR) during combustion. Puente et al. [15] studied the combustion characteristics of an asphalt mixture at a radiation intensity of 50 kW·m−2 by the combination method of cone calorimeter-Fourier transform infrared spectroscopy (FTIR) and analyzed the release characteristics of CO2, CO, and SO2 in combustion. Additionally, Xu and Huang [11, 12] analyzed the combustion procedure of asphalt binder during the process of temperature rise by thermogravimetric analysis (TGA)- FTIR, revealing the mechanism of how Mg(OH)2 affects the release of gaseous products during the various reaction stages of asphalt. In addition, by TGA-MS (mass spectrometry) analysis, Zhao et al. [16] investigated the components and release characteristics of smoke produced from the combustion of four components of asphalt. These studies indicate that combustion test methods [4, 15], especially the fixed bed combustion test and cone calorimeter, can be used to simulate the actual burning environment with a high rate of temperature rise and strong radiation, but it is challenging to analyze the specific reaction process accurately. Temperature-programmed combustion test methods [11, 12, 16], such as TGA, are more effective in analyzing the different smoke release characteristics and mechanisms of asphalt combustion during each reaction temperature range, but the reaction condition is quite different from the real situation. A comparison between these two methods is still lacking in the research conducted to date. ![]() |
|