![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction Polyurethane biomaterials are often studied for use in fabricating 3D tissue scaffolds, catheters, blood contact materials (heart valves and artificial veins), hospital bedding, injection molded implants, and other short-term implants [1–3]. Polyurethane catheters, specifically PICCs and CVCs, have been shown to fail at higher rates when exposed to radiotherapy in cancer patient [4, 5], 14.7% and 8.8%, respectively [4]. Postinsertion complication rate of nonirradiated PICC lines is 30.4% [4–7]. Previous investigations in our lab (data not shown) have indicated that varying total therapeutic radiation doses at a constant dose rate does not alter PU enough to cause instability in an aqueous environment. However, altering radiotherapy dose rate is commonly used in treating different types of cancer or targeting specific tumor locations on the body [8] and may be a contributing factor to material stability in vivo [6]. Some researchers and clinicians have suggested that radiation should be applied prior to PICC line insertion to reduce complications believed to occur through radiation exposure (thrombosis, infection, mechanical occlusion/puncture, catheter movement, and extravasation), and this study aims to investigate whether radiation may be the cause of any complications [6,9–11]. The leading causes of PU catheter complications are infection and thrombosis (blood clotting). Radiation may play a role leading up to these biological responses and will be investigated using cell proliferation and adhesion studies on PU films [7]. Occlusion and puncture are mainly affected by the placement of the catheter in the body and may arise due to improper placement causing pinching of the catheter from arm movement or pinching between rib and clavicle, rupture due to pressure from liquid moving through catheter and the body’s natural immune reaction to foreign materials causing catheter-associated thrombosis [9–12]. This study investigated these complications using biocompatibility tests combined with mechanical or chemical to provide indication of strength or chemical structure changes in the material which can aid in the movement of catheters contributing to complications [12]. Our current investigation does not focus on how material properties of catheters change only on whether or not they need to be removed. ![]() |
|