![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction The introduction of micro-CT has brought about considerable improvements in anatomical imaging of small animals through the modality’s high spatial resolution that enables identification of morphological changes in small structures. However, it is a fact that the acquisition time in typical micro-CT devices is significantly higher than those of clinical devices. Indeed, whereas a clinical scan may take even less than one second, a micro-CT scan requires around 30 min and, at times, may even take up to 1 h. Such long scan times necessitate the use of a contrast agent that is not rapidly cleared from the animal but, instead, persists in the blood for a prolonged period of time. Due to the rapid clearance of clinical CT contrast agents from the blood pool of small animals, clinical agents are not optimal for small animal imaging [1, 2]. In fact, when using clinical CT contrast agents in micro-CT studies, the data acquired is inconsistent and image reconstruction is only possible using sophisticated injection protocols [3]. To overcome the issue of rapid contrast agent clearance, micro-CT investigations are generally coupled with blood pool contrast agents, which persist in the blood for a prolonged period of time. Currently, there are a handful of commercially available micro-CT blood pool agents, which find application in vessel imaging, liver and spleen imaging, and cardiac imaging [4–11]. In view of cardiac imaging, for example, in studies of cardiac infarction and remodeling, the prolonged blood circulation time of micro-CT blood pool agents renders assessment of morphological and functional cardiac parameters possible. Besides their long blood half-life, these agents preferably create a high contrast between the blood and the myocardium at a low injection volume. Due to the inherently low blood volume of small animals, low injection volumes are desired so as to minimize adverse haemodynamic effects. Furthermore, in cardiac micro-CT studies, the animal models, for example, model for myocardial infarction, tend to be susceptible to volume overload. Thus, for cardiac imaging, a blood pool agent with a high concentration of the signal-enhancing moiety is preferred, allowing for high contrast at low injection volume. Owing to the high cardiac rate (about 600 beats/min) and rapid respiratory rate (about 300 breaths/min) of small animals, cardiac micro-CT requires the application not only of high-contrast blood pool agents but also of reconstruction methods that allow significant reduction of motion artifacts. While it is indisputable that cardiac parameters can be obtained using positron emission tomography (PET), single photon emission computed tomography (SPECT), or magnetic resonance imaging (MRI), micro-CT reconstruction methods provide images with superior spatial and temporal resolution [12–15]. In this study, we develop a micro-CT method using the innovative micro-CT blood pool agent ExiTron MyoC 8000, having a high iodine concentration (210 mg I/mL), to longitudinally monitor cardiac function in a mouse model of myocardial infarction. Through measurement of the infarct volumes observed on the micro-CT reconstructions and comparison with the volumes obtained from histopathology, we assess the feasibility of the method to noninvasively monitor cardiac processes and pathologies in small animals. ![]() |
|