![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction Physical activity (PA) is a corner stone in the treatment of type 2 diabetes (T2DM). The effects of PA on patients with T2DM include an improved glycaemic control, reduced blood pressure, an improved blood lipid profile, and a reduced waist circumference [1–4]. Thus, PA may have the potential to decrease the risks of diabetic complications and mortality in patients with T2DM. As PA is an inexpensive and nonpharmacological treatment, the nature of PA further potentiates its therapeutic appeal. However, the level of PA in patients with T2DM remains reduced as compared to that in subjects without T2DM [5]. Patients with T2DM suffer from several complications and comorbidities; among them is obstructive sleep apnoea (OSA) [6]. The prevalence of OSA among patients with T2DM has been reported to be 23–87% [6] which is in contrast to previous data from the general population reporting an OSA prevalence of 1–4% [7, 8]. Obstructive sleep apnoea is associated with an increased risk of cardiovascular disease [9]. In addition, OSA is associated with excessive daytime sleepiness, mood changes, and cognitive dysfunction [10], all conditions that may impair the patients’ ability to increase their PA levels and make other important lifestyle changes. Chasens and Olshansky [11] found that in patients with T2DM, sleepiness was a daily burden and only a minimum number of activities was performed during daytime. These daily activities may also include PA; thus, OSA and excessive daytime sleepiness in people with T2DM may have important negative implications [11]. In a study from 2014, Chien et al. found reduced strength in m. diaphragma in patients with OSA without T2DM when compared with matched controls [12]. In another study from 2016, Vranish and Bailey found that six-week inspiratory muscle training (IMT) in patients with OSA without T2DM was associated with positive effects on patient-reported sleep quality and blood pressure [13]. Whilst IMS may be reduced in patients with OSA without T2DM, it is unknown whether this association also is found in patients with OSA with concurrent T2DM. Accordingly, we tested the hypothesis that IMS in adults with T2DM without OSA is greater than that in adults with T2DM and OSA. The aim of this study was to compare IMS in patients with T2DM with and without OSA and to compare the patients’ IMS data with the IMS data in a gender- and age-matched reference population. 2. Methods The data from the present study were obtained during the period of August 2015 to January 2017 as part of an ongoing study that aims to investigate the impact of continuous positive airway pressure (CPAP) treatment on arterial stiffness in patients with T2DM and newly diagnosed OSA. ![]() |
|