欢迎浏览论文快速发表网,我们为你提供专业的论文发表咨询和论文写作指导。 [设为首页] [加入收藏]
社科类论文 科技类论文 医学类论文 管理类论文 教育类论文 农林类论文 新闻类论文 建筑类论文 文艺类论文 法学类论文
论文范文

Determination of Cyclability of Li/FeS2 Batteries Based on Measurement of Coulombic Efficiency
时间:2018-09-30 10:40   来源:未知   作者:admin   点击:
       Abstract:The electrochemical performance of negative electrodes based on different FeS2 samples was investigated. The study demonstrated a correlation between the coulombic efficiency obtained over 60 cycles and the capacity loss rate evaluated over 15 cycles. The accuracy of the coulombic efficiency and capacity loss rate measurements was advantageous for predicting the aging behavior of half-cells over a short-term test. A suggested classification of the coulombic efficiency and verification via a numerical analysis were proposed to determine the fading rate of batteries during the galvanostatic test.
1. Introduction
      Recently, lithium-ion batteries (LIBs) as a power source have been widely used in electrical devices, electric vehicles, energy storage systems, etc. In addition, there are a growing number of their applications that require excellent cyclability with high capacity. Hence, verifying the reliability of LIBs has become an important issue in recent years.
      One of the most impressive studies on aging in LIBs tracks cells during cycling and storage for up to two years to quantitatively measure the lifetime of the battery based on electrode composition [1]. However, the evaluation of the cycle performance over a long time can be problematic if it takes days or months. Therefore, new techniques are needed for the effective aging evaluation of LIBs in a short period of time [2, 3].
      The evaluation of the coulombic efficiency (CE) can be used to identify parameters that affect the normal functioning of the battery such as parasitic reactions between electrodes and electrolytes observed during discharge–charge cycling. Choi et al. [4] reported an FeS2 cathode deficiency under different organic electrolytes. Their research includes calculations of the specific capacity and capacity loss rate. This kind of evaluation draws attention to special features that make it possible to determine the relation between accurate CE and capacity loss rate as a method of system optimization, and the results can be used to rank cells according to their life expectancy without the need to use tests that take long to perform [5].
      This paper presents a method that utilizes the CE and capacity loss rate to determine the cyclability with a short-term test. Firstly, we investigated the CE based on the charge–discharge cycle in a normal operating process during 60 cycles. Then, to determine the aging during the discharge–charge cycle, the capacity loss rates were investigated with different particle sizes of the FeS2 electrodes. A simple comparison of CE with the capacity loss rate can be used to determine the effectiveness of the method and to validate the results using a short-term test.
2. Materials and Methods
2.1. Preparation of FeS2 Samples
      FeS2 (99.9%, VITZRO MILTECH) samples were mechanically milled using a planetary ball mill (PBM) (PULVERISETTE, Fritsch) for 3 hours (3 h PBM), 6 hours (6 h PBM), and 10 hours (10 h PBM) and milled using a single ball mill (SBM) for 72 hours (72 h SBM). The working electrodes were fabricated by mixing FeS2 as an active material, carbon black as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder in a 60 : 20 : 20 weight ratio, respectively. The prepared slurry was cast on a copper foil with a doctor blade and dried at 120°C in a vacuum oven for 12 h.


推荐期刊 论文范文 学术会议资讯 论文写作 发表流程 期刊征稿 常见问题 网站通告
论文快速发表网(www.k-fabiao.com)版权所有,专业学术期刊论文发表网站
代理杂志社征稿、杂志投稿、省级期刊、国家级期刊、SCI/EI期刊、学术论文发表,中国学术期刊网全文收录