欢迎浏览论文快速发表网,我们为你提供专业的论文发表咨询和论文写作指导。 [设为首页] [加入收藏]
社科类论文 科技类论文 医学类论文 管理类论文 教育类论文 农林类论文 新闻类论文 建筑类论文 文艺类论文 法学类论文
论文范文

Influences of Bath Chemistry and Plating Variables on Characteristics of Electroless Ni–P Films on
时间:2018-09-30 10:39   来源:未知   作者:admin   点击:
       Abstract:Electroless nickel–phosphorus (Ni–P) films were produced on the surface of p-type monocrystalline silicon in the alkaline citrate solutions. The influences of bath chemistry and plating variables on the chemical composition, deposition rate, morphology, and thermal stability of electroless Ni–P films on silicon wafers were studied. The as-deposited Ni–P films were almost all medium- and high-P deposits. The concentrations of Ni2+ and citric ions influenced the deposition rate of the films but did not affect P content in the deposits. With increasing  content, the P content and deposition rate were steadily increased. The pH and plating temperature had a significant effect on the chemical composition and the deposition rate of the films. The thermal stability of the medium-P film was better than that of the high-P deposit. At the same time, the proposed mechanism of Ni–P films on monocrystalline silicon substrates in the alkaline bath solution was discussed and addressed.
1. Introduction
      Electroless process of metal and alloy films makes nanometer-scale structures on silicon (Si) wafers due to its simplicity and ability to fill in fine patterns. The mass production of metallic structures on Si wafer is one of key techniques in micro- and nanoscale device applications [1, 2], such as single-electron transistors [3, 4], patterned recording media [5], highly integrated sensors [6, 7], ultralarge-scale integration metallization [8], and ohmic contacts [9].
   Electroless M–phosphorus (M=Ni, Co) deposition is the most important catalytic deposition process, due to its simplicity in operation, low equipment cost, and excellent properties in wear and corrosion. More recent work about M–P nanomaterial could be prepared by electrodeposition [10, 11] and phosphiding the hydrothermally grown precursor [12–15], which could be used as electrocatalyst for alkaline oxygen evolution reaction. In comparison with the above two processes, the electroless is an easy, cost-effective, and save-energy method. Electroless Ni–P deposition reaction can occur in an alkaline or acid environment. To study the autocatalytic deposition of Ni accompanied by P incorporation in the film, it is necessary to know the effect of the operating parameters and bath chemistry on the deposition rate and the quality of the deposits, such as the substrate nature [16], pH [17, 18], plating temperature [19], stirring [20], light [21], stabilizers [22], complexing agent [23], and additives [24]. In order to perform deposition of electroless Ni–P, the substrate surface needs to be preactivated and presensitized. Chen et al. [16] found that the crystallization of amorphous Si thin films was induced by electroless plating Ni. The crystallinity of amorphous Si increased with electroless Ni plating time but dropped when the time reached 10 min. Homma [25] investigated that electroless Ni–P films were deposited onto dielectric substrates and found that the films consisted of fine component crystals with uniform and spherical grains at the initial deposition stage. Xie and Zhang [26] reported the effects of bath chemistry and plating conditions on the structure and amorphous-forming region for electroless Ni–P on copper substrates in the alkaline bath solution at a bath temperature of 90°C and discovered that the deposition rates increased and approached a maximum value and then decreased with the increase in the concentration of Ni2+, sodium hypophosphite, and pH value, respectively. However, the deposition rates decreased with the increase in sodium citrate. Rahman and Jayaganthan [18] studied the effect of pH on electroless Ni–P films on the surface of mild steel and concluded that the Ni content increased with increasing pH. Moniruzzaman and Roy [17] reported that electroless Ni–P coating was produced on carbon steel and polypropylene substrates and pointed out that the coating of good appearances was obtained in the pH ranges between 5.5 and 12.5 on carbon steel and between 8.5 and 12 on the polypropylene. Singh et al. [21] investigated the effect of lights on the electroless Ni–P films and found that electroless deposition under the dark was the most suitable for Ni–Cu metallization process. Bulasara et al. [20] researched that the stirring had a profound effect on sodium hypophosphite-based electroless Ni baths, which were characterized with lower conversions and higher plating efficiencies without stirring condition. Jappes et al. [22] studied that the effects of stabilizers and bath temperature on efficiency and crystallinity of the electroless Ni–P on the mild steel. Ashtiani et al. [23] published the effect of different complexing agents, such as sodium citrate, sodium acetate, and lactic acid, on the P content, morphology, structure, and hardness of electroless Ni–P on Ck45 steel and found that Ni–P coating obtained using sodium citrate with the spherical nodular structure and smooth surface showed high microhardness and anticorrosion resistance. Liu et al. [19] studied the effects of pH and bath temperature on electroless Ni–P on Si in an acid plating bat and found that the deposition rate increased as both pH and temperature increased. Zhang et al. [24] studied that the improved quality of Ni film on Si (100) substrates in aqueous alkaline solution can be attributed to the fine and dense nickel particles formed in the initial stage by virtue of the fluorine ion, concentrated Ni2+ ion, and elevated temperature. Recently, Wu and Jiang [27] published that electroless Ni–P film was deposited on the surface of polycrystalline Si in the alkaline bath solutions at the temperature of 60–80°C and pH of 10.0 and found that the films were composed of the amorphous phase, regardless of bath temperature. However, few publications reported the influences of bath chemistry and plating variables on electroless Ni–P films on Si wafers from alkaline citrate solutions.


推荐期刊 论文范文 学术会议资讯 论文写作 发表流程 期刊征稿 常见问题 网站通告
论文快速发表网(www.k-fabiao.com)版权所有,专业学术期刊论文发表网站
代理杂志社征稿、杂志投稿、省级期刊、国家级期刊、SCI/EI期刊、学术论文发表,中国学术期刊网全文收录