EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
论文范文
1. Introduction Okra (Abelmoschus esculentus L. Moench.) is a multipurpose crop due to various uses of the fresh leaves, buds, flowers, pods, stems, and seeds [1]. It is a fresh vegetable found in almost all markets in Ghana due to its strong commercial value for resource poor farmers and its importance as food in rural and urban communities. Okra is a good source of many nutrients including carbohydrates, proteins (rich in lysine and tryptophan), vitamins A, B, and C, dietary fibre, calcium, zinc, folic acid, and iodine [2–4]. It has potential mucilage for medicinal applications [5], as a protective food additive against irritating and inflammatory gastric diseases [6]. Okra is also used as a blood plasma replacement or blood volume expander and also binds cholesterol and bile acid carrying toxins dumped into it by the liver [7, 8]. Despite the importance, the yield of okra in Ghana is low due to lack of improved varieties to mitigate climate change, diseases, pests, and edaphic factors. However, mutation breeding has proven to be a useful technique in plant improvement. Gamma rays represent one of the important physical agents used to improve the characters and productivity of many plants such as rice, maize, bean, cowpea, and potato [9]. Irradiation has also been successfully used to induce mutation in breeding of various crops and ornamental plants [10] and has proven an adept means of encouraging the expression of recessive genes and producing new genetic variations [10–12]. Doses of gamma irradiation positively affect growth and seed yield of okra (Abelmoschus esculentus L.) [13]. Dubey et al. [14] showed that plant height and branches per plant were increased when okra (Abelmoschus esculentus) seeds were irradiated by different doses of gamma rays. It has been indicated that the effect of interaction between doses of gamma rays and okra genotypes was highly significant () in the number of pods per plant and seeds per pod [15]. Despite its importance as a vegetable crop, okra has received little attention in terms of breeding for yield and quality improvement in Ghana. The need to explore gamma radiation technology to induce mutation in okra is to create variable genotypes and identify desirable traits for improvement of the crop. The main objective of this study was to assess the effects of gamma irradiation on growth and yield of okra. |
|