![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction With the widespread use of low cost and even free editing software, people can easily create a tampered image. Compared to forensic images, fake images could undergo kinds of manipulations, such as color changing, salient object changing, and copy-move forgery. Generally, there are two main problems in image forensics: one is tamper detection and the other one is tamper localization. Recently, more researchers pay attention to image tamper detection, which aims to discriminate whether a given image is pristine or fake. Image hashing based tamper detection approaches have been extensively studied recently for their great efficiency. It supports image content forensics by representing the semantic content in a compact signature, which should be robust against a wide range of content preserving attacks but sensitive to malicious manipulations. For image hashing generation, the state-of-art hashing methods could be mainly divided into two categories: data independent hashing and data dependent hashing. In conventional image hashing methods, image hash generation is a robust feature compression process without any learning stage. It includes (1) invariant feature transform based methods, such as Wavelet transform [1], Radon transform [2], Fourier-Mellin transform [3], DCT transform [4], and QFT transform [5], which aim to extract robust features from transform domains; (2) local feature points based methods, such as SIFT [6] and end-stopped wavelet [7], which take advantages of the invariant local feature under some content preserving image processing attacks; (3) dimension reduction based methods, such as singular value decomposition (SVD) [8], nonnegative matrix factorization (NMF) [9], and Fast Johnson-Lindenstrauss transform (FJLT) [10], which embed the low level features of the high dimensional space into lower dimension; (4) statistics features based methods, such as the robust image hashing with ring partition and invariant vector distance [11]. Moreover, Wang et al. [12] propose a perceptual image hashing method by combining image block based features and key-point-based features. Yan et al. [13] use a multiscale image hashing method based on the adaptive local feature. ![]() |
|