欢迎浏览论文快速发表网,我们为你提供专业的论文发表咨询和论文写作指导。 [设为首页] [加入收藏]
社科类论文 科技类论文 医学类论文 管理类论文 教育类论文 农林类论文 新闻类论文 建筑类论文 文艺类论文 法学类论文
论文范文

Mechanobiological Analysis of Molar Teeth with Carious Lesions through the Finite Element Method
时间:2018-11-05 23:08   来源:未知   作者:admin   点击:
       Abstract:The analysis of the distribution of stress in dental organs is a poorly studied area. That is why computational mechanobiological analysis at the tissue level using the finite element method is very useful to achieve a better understanding of the biomechanics and the behaviour of dental tissues in various pathologies. This knowledge will allow better diagnoses, customize treatment plans, and establish the basis for the development of better restoration materials. In the present work, through the use of high-fidelity biomodels, computational mechanobiological analyses were performed on four molar models affected with four different degrees of caries, which are subjected to masticatory forces. With the analyses performed, it is possible to observe that the masticatory forces that act on the enamel are not transmitted to the dentin and to the bone and periodontal ligament to protect the nerve, as it happens in a healthy dental organ. With the presence of decay, these forces are transmitted partly to the pulp. The reactions to the external loads on the dental organs depend on the advances of the carious lesion that they present, since the distribution of stresses is different in a healthy tooth.
1. Introduction
       Mechanobiology is an area of recent application in dentistry [1, 2]; this is dedicated to the analysis of stresses and deformations in tissues in living beings. Study tools used in engineering are applied in the structures of living beings. The structures that make up the stomatognathic system have a harmonious morphology with a high degree of specialization. All the bony, neuromuscular, articular, periodontal, and occlusal components establish an equilibrium between them that allow their complex physiology [3]. Even the finest detail, such as a roughness, a groove, a cusp, or an orifice, fulfills a specific function. In particular, when it comes to the chewing function, the collusive components or dental organs are the protagonists. When the total or partial loss of any of these components occurs, there is a loss of the functional balance of the system, which in turn causes the occlusion not only to be altered but also to be lost [4]. This in turn causes alterations in its biomechanics.
      The morphology of each dental organ is designed to perform this function. The occlusal surface of the posterior teeth (molars and premolars) has cusps, depressions, grooves, and pits that coincide with those of the opposing tooth (Figure 1), as well as the incisal edges, cusps, and cingules in the case of the anterior teeth (incisors and canines) [5]. Together with the rest of the components of the system, they allow the teeth to perform their function in a phenomenon called occlusion [6], which is regulated by the masticatory forces acting on each of the teeth.
      Due to this, analysis of the distribution of stresses generated by occlusal or masticatory loads, in a biological system such as the teeth, is a complex problem [7], because of the nature of the tissues of the dental organ, such as nonhomogeneous materials and the geometric irregularities of their contours and anatomical forms. In addition to this, the tooth in its structure is formed by enamel, dentine, and pulp, whose mechanical properties differ from one another. The distribution of stresses is also affected by health and pathological states, which makes their analysis even more complex. The teeth concentrates the forces generated by the muscles in small areas such as contact surfaces and cusps or incisal edges.


推荐期刊 论文范文 学术会议资讯 论文写作 发表流程 期刊征稿 常见问题 网站通告
论文快速发表网(www.k-fabiao.com)版权所有,专业学术期刊论文发表网站
代理杂志社征稿、杂志投稿、省级期刊、国家级期刊、SCI/EI期刊、学术论文发表,中国学术期刊网全文收录