![]() ![]() ![]()
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
EI Compendex Source List
![]() ![]() ![]()
论文范文
1. Introduction With the rapid development of Internet technology and information technology, digital communication is more and broader: people can release on the Internet all kinds of information anytime and anywhere. Digital image is the most intuitive, visual, and abundant information carrier, due to its convenience, speed, lack of geographical restrictions, low cost, high efficiency, and so forth; it has been more widely used and has become one of the main information network era expressions. However, people enjoy all sorts of convenience brought about by the digital image but also face some difficult security problems, such as personal privacy protection, business and military information protection, and electronic products illegal copying and dissemination. So how to protect digital image in the transmission process has become the focus of the industry. In order to protect security of images which contain data and information, we use the original image that is encrypted to resolve the security hidden danger, so the image encryption research has become a hot research topic in the field of image analysis and processing. In general, the conventional image encryption mainly has image encryption in the spatial domain, transform domain of image encryption, image encryption based on neural network and based on chaotic image encryption. Spatial domain image encryption basically has the following two ways: one is scrambling by changing the position relationship of each image’s pixels [1]. The other is to use certain encryption rules that change the pixel values of the original image and make the information entropy close to the maximum, namely, information entropy encryption [2]. Image scrambling encryption scheme is mainly used in digital image security process of pretreatment and posttreatment stage, so as to further guarantee the security of information contained in image; it can be used as a special digital image encryption method, but it is vulnerable to be attacked just by image scrambling encryption by statistical analysis; it cannot solve the information contained in the original image security problems. Image replacement and diffusion both change the relevance of the original image, making the information entropy change. And image diffusion is based on image correlation transformation among adjacent pixels according to certain rules, but it may cause some image information loss. Transform domain image encryption is mainly through some sort of orthogonal transformation on the image; then, it is encrypted when it is coding processing. Like image encryption based on tree structure [3] and image encryption based on SCAN language [4], these image encryption schemes involve the problem of how to generate pseudorandom sequences; now the problem has no good solution. By using neural network with the parallel distributed processing, highly nonlinear association memory [5], and other characteristics, to encrypt the image information, we call it artificial neural network image encryption. But the neural network needs a lot of neurons data to encrypt, because it cannot be adaptive to generate neural networks, then increases complexity of encryption, and reduces efficiency of encryption. In order to solve this problem, the related research scholars put forward using chaos theory to encrypt digital image, because the chaos theory [6] is sensitive to initial conditions and system parameters extremely, randomness of trajectory, pseudorandomness and ergodicity, and other special complex dynamics properties, making it very suitable for digital image encryption, forming a kind of chaotic image encryption algorithm. For example, Fridrich in 1998 for the first time introduced chaos theory as digital image encryption and put forward the two-dimensional Baker map image encryption [7] for image scrambling operation and then extended it to 3d. Due to 3d, Baker map image encryption efficiency is low, so Chen et al. put forward 3d Baker map [8] fast image encryption algorithm, which makes the security of encryption and efficiency improve to a certain extent. In [9], a standard map image encryption algorithm is proposed; then Wong et al. proposed on the basis of Baptista algorithm an improved fast image encryption algorithm [10]. At the same time, the document [11–17] was also, respectively, proposed by using Logistic mapping, Tent, Lorenz system, and one-way coupled map lattice, such as a variety of chaotic mapping algorithm for digital image encryption. Though these chaotic image encryption algorithms to a certain extent improve the security performance, but due to the varying complex degrees of the image, causing them to fail to solve the problem of encryption efficiency, it well often fail to solve the problem of security threats to a certain extent. ![]() |
|