![]() ![]() ![]()
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
EI Compendex Source List
![]() ![]() ![]()
论文范文
1. Introduction In 1961, Franken and his colleagues firstly discovered the second-harmonic generation in quartz using a ruby laser beam. And then Bloembergen built a theoretical framework to explain the principle of nonlinear optical parametric generation. Since then, lasers in the human society have been playing an increasingly important role. Nonlinear optical (NLO) materials have a very important significance to convert the laser wavelength into the spectral region and to obtain a high-power laser source. In the past three decades, many useful NLO crystals in near-infrared (IR), visible, and ultraviolet (UV) regions (wavelength from 0.2 to 2 μm) have been developed. In case of the visible region, the KTP (KTiOPO4) crystal has a wide transmission range, high frequency conversion efficiency, good phase-matchable wavelength, high laser damage threshold (LDT), and excellent physical and chemical stability [1]. Regarding UV and deep-UV regions, Chinese scientists have made remarkable contributions. Chen and his collaborators invented the BBO [2], LBO [3], and KBBF [4] crystals, known as the “Chinese card” crystal. In particular, the KBBF crystal successfully achieves the sixth-harmonic generation of 1.064 μm, which is the only source of deep-UV laser by direct SHG output [5]. BiB3O6 (BIBO) crystal possesses large effective nonlinearity, of 3.7 pm/V, and versatile phase-matching properties. Its large angular and spectral acceptance bandwidths and low spatial walk-off at room temperature thus make BIBO highly attractive for frequency conversion in the visible and UV region [6]. Midinfrared (mid-IR) NLO materials are indispensable for obtaining all-solid-state lasers in the spectral range of 3–20 μm by optical parametric oscillation (OPO) or difference frequency generation (DFG) [7]. Tunable narrow band lasers using NLO crystals have very important applications in many advanced areas of science and technology, such as infrared remote sensing [8], biological tissue imaging [9], environmental monitoring [10], and minimally invasive medical surgery [11]. So far, commercially available mid-IR NLO crystals are AgGaS2 (AGS), AgGaSe2 (AGSe), and ZnGeP2 (ZGP). They possess high second-harmonic generation (SHG) coefficients of about 13 pm/V, 33 pm/V, and 75 pm/V, respectively [12]. However, these materials have some disadvantages that hinder their use in mid-IR laser generation. For example, the laser damage threshold (LDT) values of AGS and AGSe are too small (only about 25 MW/cm2 and 11 MW/cm2 (@1.06 μm, 35 ns), resp.) [13] to bear a high-power pumping source. Meanwhile, the strong two-photon adsorption (TPA) in ZGP resulting from its narrow bandgap (2.0 eV) makes it impossible to use an Nd:YAG laser as the pumping source [14]. Therefore, the current rapid developments of mid-IR lasers urgently demand the discovery of new mid-IR NLO materials with a good performance. In general, optional midinfrared nonlinear optical materials, in addition to having a noncentral symmetric structure, should meet the following conditions [15, 16]: (1) a wider range of transmission bands that can cover important atmospheric transparent windows of 3–5 μm; (2) a large nonlinear optical coefficient, because the power of the output light is proportional to the effective nonlinear optical coefficient; (3) high LDT, which essentially depends on the wide bandgap of the material; (4) moderate birefringence to achieve a phase-matchable condition; (5) good growth habit and high optical quality; and (6) good physical and chemical stabilities for convenient applications. ![]() |
|