![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction The airborne distributed Position and Orientation System (POS) has been proposed to achieve multipoint spatiotemporal motion parameters for synthetical earth observation systems with multiple remote sensing loads [1–3]. Distributed POS can be composed of a few high precision master systems, some low precision slave systems, POS Computer System (PCS), and postprocessing software. Usually, the master system is a high precision integrated system of Strapdown Inertial Navigation System and Global Navigation Satellite System [4] (also called the main POS). The slave system is only an inertial measurement unit (IMU), which consists of three orthogonally mounted gyros and accelerometers, respectively, and is placed as close as possible to the location of the load. The slave systems, also called the sub-IMUs, depend on the master system to transfer alignment to achieve their high accuracy motion parameters. Due to the deformation of aircraft caused by gust, turbulence, and other factors, there is a time-varying and complex flexure angle between the main POS and each sub-IMU besides the rigid misalignment angle. The schematic diagram of the measuring system and the cross section of aircraft with deformation at a certain moment are shown in Figure 1, where the grey part with dotted line is the ideal state of the wings without any deformation. It is clear to see that the premise and key of high accuracy transfer alignment is the attitude transformation, determined by flexure and misalignment angle between the master system and slave system, which can be estimated and compensated with high accuracy. Furthermore, when there are many remote sensing loads working simultaneously, airborne distributed array antenna Synthetic Aperture Radar (SAR) is a typical example which has many subantennas on both sides of the wing; the high accuracy motion parameters of each load must be measured [5, 6]. Since the bearing capacity of aircraft is limited, especially the wing section, there are very stringent requirements on the weight and size of the measurement equipment, while the measurement accuracy of sub-IMU is proportional to the weight and size. It should be noted that a high accuracy sub-IMU may not be available at the location of each load, and the positions of sub-IMU and load are not always matched with each other. Therefore, it is necessary to consider the arrangement optimization of the distributed POS, such that the high precision motion parameters of all loads can be obtained using the minimum sub-IMUs. And the arrangement optimization also requires the attitude transformation between each node [7-9]. At present, aircraft deformation measuring methods can be summarized into three types: strain sensor measurement, optical measurement, and inertial measurement. The strain sensor measurement can be traced back to the 1940s and later it was improved by Skopinski et al. [10, 11]. It is a kind of mechanical measuring method which is widely used because of its convenient operation. However, it has limitation to the aircraft material and needs many wires which will increase the load of the aircraft. Besides, the strain sensor is easily affected by the physical abrasion, temperature, and so forth [12–14]. As for optical measurement, the Dutch National Aerospace Laboratory (NLR) used a camera to record the black and white striped pattern on the wing surface to estimate the flexible deformation [15]. Then, NLR presented a noncontact optical measurement which can obtain the deformation rule [16]. In addition, there are other optical measurements using visual sensors, optical fiber sensors, and bionic optical sensors to measure the flexible deformation [17–19]. All those optical measurements need the external measurement components and the beam transceivers must be intervisible, which make them not only complex to be installed, but also prone to be affected by the weather conditions. Inertial measurement is mainly based on the IMUs which are installed at the places of both main and subnodes. The difference of the navigation results between the main node and subnode, such as attitude difference and velocity difference, is utilized to estimate the flexible deformation. This procedure is known as the transfer alignment [20,21]. ![]() |
|