![]() ![]() ![]()
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
EI Compendex Source List
![]() ![]() ![]()
论文范文
1. Introduction The geometry of fullerenes obeys the isolated-pentagon rule. However, this rule cannot be satisfied for the smallest fullerene C20, which contains twelve 5-membered rings (MRs) and zero 6-MRs. Therefore, the C20 fullerene would be highly reactive owing to the fusion of strained 5-MRs. Furthermore, this strain could be removed through reactions of C20 that form sp3 bonds. By using density functional theory method, the structures and electronic states of alkyl radicals (R, , –4) added to C20 fullerenes were investigated [1]. Also it was proposed that thiyl radical-promoted polycyclization to form dodecahedrane would be exergonic [2]. Density functional calculations of the reactions CX3 radical + C20H20 (X = H, F, Cl, and Br) based on two pathways (H-displacement and H-abstraction from C20H20) showed that CH3 radical prefers H-abstraction from C20H20 while F-displacement is favorable for the reaction of CF3 radical with the fullerene. Exothermic characters of H-abstraction with the lower potential barrier indicate that the H-abstraction would dominate the reaction + C20H20 while endothermic characters with high potential barrier heights for two reaction pathways of C20H20 with indicate unfavorable thermodynamically and kinetically pathways for these reactions [3]. Using the PBE0/cc-pVDZ quantum chemical method, dipole moments, polarizabilities, the first hyperpolarizabilities for 1,2-diethynyldodecahedrane C20H18(CCH)2 and diethynylmethanododecahedrane C20H18C(CCH)2 including two neighboring ethynyl groups in vacuum and in tetrahydrofuran (THF) were reported [4]. A dodecahedrane derivative, namely, the symmetric 1,16-dimethyl derivative, has been synthesized experimentally [5–8]. Since then, the synthesis of methyl-substituted dodecahedrane was also confirmed by X-ray analysis. Moreover, Pólya’s theorem was applied to the enumeration of substituted dodecahedrane isomers [9]. The total synthesis of dodecahedrane was confirmed by the single-peak nature of the 1H and 13C NMR spectra [10], as well as the X-ray spectra [11, 12]. Methyl dodecahedrane, 1,4-dimethyl (), 1,6-dimethyl (), 1,16-dimethyl () dodecahedranes, and trimethyl dodecahedrane have subsequently been reported [13–15]. However, at present no 1,2-dimethyl () and 1,7-dimethyl () dodecahedranes have been reported, yet. The structures of dodecahedrane and its derivatives were studied at the level of molecular mechanics calculations [16, 17], INDO calculations [18], and hybrid density functional B3LYP calculations [19]. Recently the relative energies, electronic properties, and atomic structures of disubstituted C20H18X2 regioisomers (X = F, Cl, Br, or OH) at the level of B3LYP/6-31G(d,p) have been determined [20]. Here the predominant electronic configurations of the regioisomers with all substituents X which are higher electron negativity than carbon are not so different, but the HOMO and LUMO maps for five regioisomers are not similar, implying that different exohedral complexes may undergo a distinct set of characteristic chemical reactions. However, to the best of our knowledge, no the first principle calculations of the full optimization of the five dimethyl dodecahedranes, C20H18(CH3)2 derivatives using B3LYP/6-31G(d,p), have been reported. Such calculations would be required in order to understand, in the point of energetics, why only three derivatives have been synthesized. Accordingly, in this study we determine the relative energies, electronic properties, and atomic structures of five derivatives with the same spin state, following the methods of Hwang et al. 2012 [20]. Also it is interesting to see the effect of the methyl substituents on the frontier orbitals, because carbon atoms have the same electronegativity in the substituents and the cage. ![]() |
|