![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction Analysing passengers’ movements in a public transit network is important in understanding passengers’ travel behaviours and designing more customised public transit services. By identifying passengers with similar spatial and/or temporal trip patterns and understanding their characteristics, transit operators could design transit services that better meet different needs of different passenger groups and develop strategies to influence travellers to use the existing transit network more efficiently. For instance, if a group of passengers every day boards on a specific bus route at a specific stop and time, and they change the bus at another stop to arrive at their final destination, then a specific bus (or a minibus) can be allocated to that group of passengers between their first boarding and last alighting stop for particular periods. With the availability of transit smart card data that provide information on boarding and alighting locations and times for each passenger trip, it is now possible to analyse spatial and temporal movement patterns for each passenger and compare them across passengers, thereby allowing a deeper understanding of individual passengers and their relationships. And each spatial and temporal dimension of the movement has its measures and units, which makes it difficult to study these dimensions simultaneously [1]. Transit authorities have developed automated fare collection (AFC) systems around the world since two decades ago. These systems not only aim to gather fares but also they turn valuable datasets out of trips as a by-product. The datasets include time and place of transactions for boarding on and/or alighting from the public transit system [2, 3]. The datasets help researchers to expand the studies and investigate nested interactions among public transit passengers [4, 5]. Previously, datasets for transport studies were gathered mostly from surveys, which were expensive to run and limited in size. Hence, smart card datasets provide opportunities to explore travel behaviours of public transit passengers in large and detailed scales. Exploring similarities among passengers’ trips, where trip similarity can be defined regarding spatial and/or temporal dimensions, can discover relationships among the passengers. By identifying how similar two passengers’ trips are spatial and temporal, the “passenger similarity” can be defined as a composite measure of trip similarity between two passengers. Such a passenger-level similarity measure can help the analysis of passenger characteristics. These measures can help the design and development of various customer-centric transit services and mobility applications. Examples of such applications include demand responsive transport (DRT) systems [6], friend recommendation systems [7, 8], and traffic flow prediction models [9]. ![]() |
|