![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction Recently, background modeling and subtraction became the most popular technique for moving object detection in computer vision, such as object recognition and traffic surveillance [1–9]. Compared to optical flow [10, 11] and interframe difference algorithms [12], background subtraction algorithm needs less computation and performs better, and it is more flexible and effective. The idea of background subtraction is to differentiate the current image from a reference background model. These algorithms initialize a background model at first to represent the scene with no moving objects and then detect the moving objects by computing the difference between the current frame and the background model. Dynamic background is a challenge for background subtraction, such as waving tree leaves and ripples on river. In the past several years, many background subtraction algorithms have been proposed, and most of them focus on building more effective background model to handle dynamic background as follows: (1)Features: texture and color [13–15] (2)Combining methods: combining two or more background models as the new model [16] (3)Updating the background model [17] In this paper, a new pixelwise and nonparametric moving object detection method is proposed. Background model is built by the first frames and sampling times in 3 × 3 neighborhood region randomly. On the one hand, spatiotemporal model represents dynamic background scenes well. On the other hand, a new update strategy makes the background model fit the dynamic background. In addition, the proposed method can deal with ghost well. Experimental results show that the proposed method can efficiently and correctly detect the moving objects from the dynamic background. This paper is organized as follows. In the next section, an overview of existing approaches of background subtraction is presented. Section 3 describes the proposed method in detail, and then Section 4 provides the experimental results and comparison with other methods. Section 5 includes conclusions and further research directions. 2. Related Work In this section, some background subtraction methods will be introduced, which are divided into parametric and nonparametric models. For parametric models, the most commonly used method is Gaussian Mixture Model (GMM) [18]. Before GMM, a per-pixel Gaussian model was proposed [19], which calculated the mean and standard deviation for each pixel at first and then compared the probability with a certain threshold of each pixel to classify the current pixel as background or foreground. But this Gaussian model cannot deal with noise and dynamic situation. GMM was proposed to solve these problems. GMM usually set three-to-five Gaussian models for each pixel and updated the model after matching. Several papers [20, 21] improved the GMM method to be more flexible and efficient in recent years. ![]() |
|