![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction In order to understand the bone fracture, it is very important to study the macrodamage of the bone with respect to mechanical and physiological loads. Bone tissue is a complex, multiphasic, heterogeneous, anisotropic, and highly hierarchized material structure. Predicting and preventing bone fracture is a very important area in orthopaedics given the volume of fractures that occurs annually. From a macroscopic point of view, bone tissue is divided into two types: the trabecular bone with 50–95% porosity [1] and the cortical bone with 5–10% porosity [1]. Bone tissue can be divided into five levels [2], which are macro, meso, micros, submicro, and nanostructure. The macrostructure level is the whole bone, which ranges from several millimeters to several centimeters, as shown in Figure 1. In this paper, an attempt has been made to establish a detailed understanding of the bone tissue mechanical behavior as it is important in the device design and to derive implant life. Correspondingly, an accurate damage prediction model for a bone tissue is needed in order to predict the fracture of the bone or the reliability of a bone-implant structure. Numerous damage models were proposed using the macrostructure of the bone. However, each model has made an assumption regarding the mechanical properties, loading conditions, or the structure of the bone. These assumptions have not given realistic predictions for the damage accumulation in a bone. Depending on the mechanical properties of bone tissue, bone damage models can be divided into elastic-viscoplastic, elastoplastic, and plastic damage models. In addition, depending on the damage type, bone damage models can be divided into electromagnetic, fracture, bending, and fatigue damage models. The elastic-viscoplastic damage models take into consideration that the bone has elastic, plastic, and viscus material properties. Recently, several models have been proposed that describe the damage model of the bone as an elastic viscoplastic model such as Keyak and Rossi [3]. They proposed fracture load by using finite element models and several failure theories [3]. However, they used isotropic material properties for bone tissue. Some studies proposed elastoplastic damage modes as well. These models take into account elastic and plastic material properties such as in the Garcia et al. study [4] and the Fondrk et al. study [5]. They proposed elastic plastic damage models for bone tissue and developed a model for cortical bone tissue only. Other studies proposed plastic damage models, which take into consideration that the bone has plastic material properties only. In addition to the mechanical properties, the loading conditions have a significant effect on the macrodamage accumulation of the bone. Some studies analyzed only tension, compression, or three-point bending [6]. ![]() |
|