![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction The interest in developing new robotic devices for medical rehabilitation is due to their capacity to perform repetitive tasks and because they allow to analyse the patient evolution objectively [1]. The most outstanding medical applications for an exoskeleton are as follows: (i)Stroke rehabilitation (ischemic and hemorrhagic ictus), thanks to brain plasticity to regenerate neurons in an anatomic and functional way. It is the most interesting application, and it is analysed particularly in the following sections (ii)Muscle injury recuperation (iii)Spinal cord injury recovery (iv)Muscular stimulation for aged people Stroke has become one of the most common diseases and is a cerebrovascular accident (CVA) affecting lots of victims, not only with deaths but even disabling people, in an increasingly aged society. WHO (World Health Organization) calculates that 15 million people have stroke every year in the world. Stroke happens when poor blood flows to the brain resulting in cell death. There are two main types of stroke: ischemic, due to the lack of blood flow, and hemorrhagic, due to bleeding. Signs and symptoms of stroke may include an inability to move or feel on one side of the body, problems in understanding or speaking, feeling like the world is spinning, or loss of vision to one side, among others. The long-term effects of stroke are loss of memory and up to 85% motoric disturbances on the opposite side of the body to the area of the brain where there was a stroke [2]. This disorder is called hemiparesis or hemiplegia, which is a unilateral paresis and weakness of the entire left or right side of the body and it is eventually characterized by uncontrolled or partial movements. The weeks following a stroke are crucial because the damage can be evaluated. Motoric disturbances are divided into weakness, loss of joint control, and uncontrolled muscle contractions. The disabilities are caused by weakness and abnormal muscle contractions, due to the production of interruptions in the upper limb movements and loss of dexterity of the hand [3]. The individual movement capacity is essential to perform ADL (activities of daily living). Motoric disturbances produced by stroke decrease significantly the quality of life of patients. These disorders cause difficulties in performing their daily activities. In this way, orthoses and exoskeletons, along with physical rehabilitation and muscle electrical stimulation techniques, are currently being developed in order to improve the physical condition of patients and to improve their quality of life consequently. It has been demonstrated that with physical rehabilitation, either carried out by using exoskeletons or wearable devices or by the help of a therapist, stroke patients can recover their motoric capacity. Therefore, these rehabilitation devices can improve the motoric condition of stroke patients thanks to brain plasticity, which is the nerve cell’s capacity to automatically regenerate in an anatomical and functional way as a consequence of environmental stimulations (in this project, the stimulation is produced by the movement of the right arm by using the SMA exoskeleton). Neurons from a nondamaged brain area can develop the abilities of neurons from a damaged brain area by stimulating the muscles of the affected extremity[4–6]. ![]() |
|