欢迎浏览论文快速发表网,我们为你提供专业的论文发表咨询和论文写作指导。 [设为首页] [加入收藏]
社科类论文 科技类论文 医学类论文 管理类论文 教育类论文 农林类论文 新闻类论文 建筑类论文 文艺类论文 法学类论文
论文范文

Optimization of Dimensions of Cylindrical Piezoceramics as Radio-Clean Low Frequency Acoustic Sensors
时间:2017-08-21 23:57   来源:未知   作者:admin   点击:
       Abstract:Circular piezoelectric transducers with axial polarization are proposed as low frequency acoustic sensors for dark matter bubble chamber detectors. The axial vibration behaviour of the transducer is studied by three different methods: analytical models, FEM simulation, and experimental setup. To optimize disk geometry for this application, the dependence of the vibrational modes in function of the diameter-to-thickness ratio from 0.5 (a tall cylinder) to 20.0 (a thin disk) has been studied. Resonant and antiresonant frequencies for each of the lowest modes are determined and electromechanical coupling coefficients are calculated. From this analysis, due to the requirements of radiopurity and little volume, optimal diameter-to-thickness ratios for good transducer performance are discussed.
1.Introduction
       The first discovery of the piezoelectric effect was found in 1880 by Jacques and Pierre Curie. They discovered that a quartz crystal submitted to mechanical action will produce an electrical potential that is proportional to the force applied. This effect is called direct piezoelectric effect. In the next year, Gabriel Lippmann described an analytical method for the reverse piezoelectric effect and the Curie brothers demonstrated this theory in the laboratory. Since its discovery, the piezoelectricity has been used in different fields such as defence, medical diagnosis, particle detection, ultrasonics, motors, and echolocation [1, 2]. Due to the different vibrations modes in a piezoelectric material, the applications of this phenomenon can be different in each field. The first piezoelectric material used was the quartz; however, this material is not very good to transform the electrical energy into mechanic energy and its sensitivity is small. Later, in the middle of XIX century, lead zirconate titanate crystals (PZT) were developed. This material has a better sensitivity and frequency response. This material is produced using a very intense electrical field that polarizes the ceramic in a specific direction.
      Piezoceramic transducers have usually a regular geometry and the knowledge of the behaviour of piezoceramic disks is important for transducer design and applications [3, 4]. With these transducers, it is possible to generate vibrations from a few to several hundreds of kHz, demonstrating its feasibility to be used as ultrasonic sensors and actuators in this frequency range.
       For example, recent applications use piezoelectric sensors in order to detect the acoustic signal emitted by the interaction of elementary particles in a fluid target. In this sense, the dark matter detectors PICO bubble chambers use a superheated fluid target filled in a glass vessel [5, 6]. Under some thermodynamic conditions, the particle interaction produces a bubble nucleation within the fluid and acoustic waves are emitted during the bubble growth. These sensors are glued to the external walls of the vessel that contains the metastable fluid. The acoustic discernment of the different acoustic events depends forcefully on the complete sensor properties and there are constraints as well in the little size and radiopurity of the piezoelectric ceramics [7]. These detectors use circular piezoceramics (both cylindrical and disk types) in the transducer design for a frequency bandwidth up to 150 kHz. These show the influence of bonding the ceramic to the vessel in its acoustic response. Among others, it is extracted that there is an increase of the sensors sensitivity, mainly in low frequencies. This is due to a better adaptation of acoustic impedances between the medium and the ceramic, through the glass of the vessel [7]. However, the first step in the design of the final transducer is the choice of the type and size of the ceramic taking into account its final use. For this, and since low radioactivity is a must, the amount of ceramic used in the transducer is a factor of great importance. This is because the ceramic material contains lead, which is usually accompanied with heavy radioisotopes that are alpha emitters and thus a source of background through alpha-neutron reactions.
       In this paper, we explain a proven methodology to study the optimization of this type of sensors. For this, several circular section (disks or cylinders) PIC255 piezoceramics with different width and height are studied with analytical and numerical methods and the results obtained are contrasted by experimental measurements. In previous works with circular PZT, some authors studied the natural vibration modes of axial symmetric piezoceramics using Finite Element Methods (FEM) [3] focusing on the efficiency and transducer design. Theoretical analysis contrasted with experimental measurements of resonant vibration with interferometry and laser Doppler vibrometer have been used [8]. Additional characterization methods and theoretical approach formulas can also be found. Here, the main parameters of piezoceramics will be compared: the resonance, , and antiresonance, , frequencies of the electrical impedance and its amplitude, the product of each frequency resonance and the length (thickness, , or diameter, ) associated with the mode of vibration , and the piezoelectric coupling factor, . Moreover, the ratio of coupling factors of the lowest piezoelectric modes gives us a quantified estimation of the energy distribution in this frequency range. The conclusions of these studies lead us to have design principles to select a specific piezoceramic circular geometry with a radio-clean piezoelectric material that can be used in the next generation of dark matter bubble chamber detectors (PICO 500 L) [9].


推荐期刊 论文范文 学术会议资讯 论文写作 发表流程 期刊征稿 常见问题 网站通告
论文快速发表网(www.k-fabiao.com)版权所有,专业学术期刊论文发表网站
代理杂志社征稿、杂志投稿、省级期刊、国家级期刊、SCI/EI期刊、学术论文发表,中国学术期刊网全文收录