![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction Oxygen atom (O I) is the most abundant element after hydrogen and helium in the Universe. Its spectroscopic study is very important for the knowledge of the structure of stars, galaxies and in general the whole Universe. It is also important for studying the life on the earth and the possibility of life on other planets or exoplanets. The studies of earth’s atmosphere and its radiative properties need these data. Industrial and technical applications need the characteristics of this element. Pradhan and Saraph [1] calculated oscillator strengths for dipole transitions in O I using the SUPERSTRUCTURE (SS) code [2] with spectroscopic type orbitals for 1s, 2s, and 2p and correlation type orbitals for the . Tayal and Henry [3] calculated oscillator strengths and electron collisional excitation cross sections for O I. They used the Hibbert CIV3 atomic structure code [4] with the eight orthogonal one-electron orbitals 1s, 2s, 2p, 3s, 3p, 3d, 4s, and 4p. Using the same CIV3 atomic structure code, Bell and Hibbert [5] calculated oscillator strengths for allowed transitions in O I with more single electron orbitals. Hibbert et al. (HBGV) [6] used the CIV3 code to calculate E1 transitions connecting the and energy levels in O I. Biémont et al. [7] calculate oscillator strengths of astrophysical interest for O I using the CIV3 configuration interaction code and the Hartree-Fock pseudorelativistic (HFR) suite of Cowan (CW) codes [8]. Using the SS code, Biémont and Zeippen [9] calculated oscillator strengths for 2p4-3s and 3s-3p allowed or spin-forbidden transitions in O I. Zheng and Wang [10] used the Weakest Bound Electron Potential Model (WBEPM) theory to calculate radiative lifetime, transition probabilities, and oscillator strengths for atomic carbon and oxygen. Using the Multiconfiguration Hartree-Fock (MCHF) method [11], Tachiev and Froese Fischer (TFF) [12] calculated ab initio Breit-Pauli energy levels and transition rates for nitrogen-like and oxygen-like sequences. Froese Fischer and Tachiev (FFT) [13] calculated Breit-Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences in the adjusted with experimental values. Fan et al. [14] used the WBEPMT theory to calculate energy levels of high states in O I. Çelik and Ateş [15] employed the WBEPMT theory to calculate radial transition matrix elements and then atomic transition probabilities for O I. Using CW or SS or AS codes, we did atomic structure calculations for several atoms and ions [16–18] that are needed for ab initio Stark broadening calculations [19, 20] and for emission line ratio calculations [21], but we never compare results obtained by the three codes for the same element. About O I atomic data in databases, we used the National Institute of Standards and Technology (NIST) data [22] for fine structure energy levels and oscillator strengths. There are energy levels and oscillator strengths of O I without fine structure in the Opacity Project TOPbase [23] and NORAD-Atomic-Data [24] atomic structure databases. TIPbase database [25] of the Opacity Project used NIST data for the fine structure energy levels and Galavis et al. [26] data for the oscillator strengths fine structure data. Galavis et al. [26] used the SS atomic structure code with spectroscopic type orbitals for 1s, 2s, and 2p and correlation type orbitals for , , , and . In the Chianti project [27], they used the NIST database for experimental energy levels and oscillator strengths. For theoretical energy levels they used the Zatsarinny and Tayal [28] and FFT [13] for the theoretical oscillator strengths. In this work, we will calculate atomic data for transitions with fine structure in O I using CW and SS and AS codes. Comparison with other theoretical and experimental data available in the literature will be presented. ![]() |
|