![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Diversity in Systems Statistical distributions play an important role in any branch of science that studies systems comprised of many similar or identical particles, objects, or actors, whether material or immaterial, human or nonhuman. One of the key features that determines the characteristics and range of potential behaviors of such systems is the degree and distribution of diversity, that is, the extent to which the components of the system occupy states with similar or different features. As Page outlined in a series of inquiries [1, 2], including The Difference and Diversity and Complexity, diversity within systems is an important concern for science, be it making sense of economic inequality, expanding the trade portfolio of countries, measuring the collapse of species diversity in various ecosystems, or determining the optimal utility/robustness of a network. However, an important major challenge in the literature on diversity and complexity, which Page also points out [1, 2], remains: the issue of measurement. Although statistical distributions that directly reflect the spread of key parameters (such as mass, age, wealth, or energy) provide descriptions of this diversity, it can be difficult to compare the diversity of different distributions or even the same distribution under different conditions, mostly because of differences in scales and parameters. Also, many of the measures currently available compress diversity into a single score or are not intuitive [1–4]. At the outset, motivated by examples of measuring diversity in ecology and evolutionary biology from [3, 4], we sought to address these challenges. We begin with some definitions and a review of our previous research. First, in terms of definitions, we follow the ecological literature, defining diversity as the interplay of “richness” and “evenness” in a probability distribution. Richness refers to the number of different diversity types in a system. Examples include (a) the different levels of household income in a city, (b) the number of different species in an ecosystem, (c) the diversity of a country’s exports, (d) the distribution of different nodes in a complex network, (e) the various health trends for a particular disease across time/space, or (f) the cultural or ethnic diversity of an organization or company. In all such instances, the greater the number of diversity types (be these types discrete or continuous), the greater the degree of richness in a system. In the case of the current study, for example, richness was defined as the number of different energy states. In turn, evenness refers to the uniformity or “equiprobability” of occurrence of such states. In terms of the above examples, evenness would be defined as (a) a city where household income was evenly distributed, (b) an ecosystem where the diversity of its species was equal in number, (c) a country with an even distribution of exports, (d) a complex network where all nodes had the same probability of occurrence, (e) a disease where all possible health trends were equiprobable, or (f) a company or organization where people of different cultural or ethnic backgrounds were evenly distributed. In the case of the current study, for example, evenness was defined as the uniformity or “equiprobability” of the occurrence of all possible energy states. ![]() |
|