欢迎浏览论文快速发表网,我们为你提供专业的论文发表咨询和论文写作指导。 [设为首页] [加入收藏]
社科类论文 科技类论文 医学类论文 管理类论文 教育类论文 农林类论文 新闻类论文 建筑类论文 文艺类论文 法学类论文
论文范文

Detection and Visualization of Behavior
时间:2017-05-25 12:04   来源:未知   作者:admin   点击:
       Malware analysts still need to manually inspect malware samples that are considered suspicious by heuristic rules. They dissect software pieces and look for malware evidence in the code. The increasing number of malicious applications targeting Android devices raises the demand for analyzing them to find where the malcode is triggered when user interacts with them. In this paper a framework tomonitor and visualize Android applications’ anomalous function calls is described. Our approach includes platformindependent application instrumentation, introducing hooks in order to trace restricted API functions used at runtime of the application. These function calls are collected at a central server where the application behavior filtering and a visualization take place.This can help Android malware analysts in visually inspecting what the application under study does, easily identifying such malicious functions.
1. Introduction
       Collecting a large amount of data issued by applications for smartphones is essential for making statistics about the applications’ usage or characterizing the applications. Characterizing applications might be useful for designing both an anomaly-detection system and/or a misuse detecting system, for instance. Nowadays, smartphones running on an Android platform represent an overwhelming majority of smartphones [1]. However, Android platforms put restrictions on applications for security reasons. These restrictions prevent us from easily collecting traces without modifying the firmware or rooting the smartphone. Since modifying the firmware or rooting the smartphone may void the warranty of the smartphone, thismethod cannot be deployed on a large scale. From the security point of view, the increase in the number of internet-connected mobile devices orldwide, along with a gradual adoption of LTE/4G, has drawn the attention of attackers seeking to exploit vulnerabilities and mobile infrastructures. Therefore, the malware targeting smartphones has grown xponentially. Android malware is one of the major security issues and fast growing threats facing the Internet in the mobile arena, today. Moreover, mobile users increasingly rely on unofficial repositories in order to freely install paid applications whose protection measures are at least dubious or unknown. Some of these Android applications have been uploaded to such repositories by malevolent communities that incorporate malicious code into them.This poses strong security and privacy issues both to users and operators.Thus, further work is needed to investigate threats that are expected due to further proliferation and connectivity of gadgets and applications for smartmobile devices.
       This work focuses on monitoring Android applications’suspicious behavior at runtime and visualizing their malicious functions to understand the intention behind them. We propose a platform-independent behavior monitoring infrastructure composed of four elements: (i) an Android application that guides the user in selecting, instrumenting, and monitoring of the application to be examined, (ii) an embedded client that is inserted in each application to be monitored, (iii) a cloud service that collects the application to be instrumented and also the traces related to the function calls, (iv) and finally a visualization component that generates behavior-related dendrograms out of the traces. A dendrogram[2] consists ofmanyU-shaped nodes-lines that connect data of the Android application (e.g., the package name of the application, Java classes, and methods and functions invoked) in a hierarchical tree. As a matter of fact, we are interested in the functions andmethods which are frequently seen in malicious code. Thus, malicious behavior could be highlighted in the dendrogram based on a predefined set of anomaly rules. An overview of the monitoring system is shown in Figure1.
        Monitoring an application at runtime is essential to understand how it interacts with the device, with key components such as the provided application programming interfaces (APIs). An API specifies how some software components (routines, protocols, and tools) should act when subject to invocations by other components. By tracing and analyzing these interactions, we are able to find out how the applications behave, handle sensitive data, and interact with the operating system. In short, Android offers a set of API functions for applications to access protected resources [3]. The remainder of the paper is organized as follows. Section 2 provides the notions behind the components used in the rest of the paper. Next, the related work is discussed in Section 3. Next we describe the monitoring and visualization architecture in Section 4, while we provide the details of
the implementational issues of our system in Section 5. Later, in Section 6, we evaluate the proposed infrastructure and the obtained results by using 8 malware applications. Limitations and Conclusions are presented in Sections 7 and 8, respectively.


推荐期刊 论文范文 学术会议资讯 论文写作 发表流程 期刊征稿 常见问题 网站通告
论文快速发表网(www.k-fabiao.com)版权所有,专业学术期刊论文发表网站
代理杂志社征稿、杂志投稿、省级期刊、国家级期刊、SCI/EI期刊、学术论文发表,中国学术期刊网全文收录