欢迎浏览论文快速发表网,我们为你提供专业的论文发表咨询和论文写作指导。 [设为首页] [加入收藏]
社科类论文 科技类论文 医学类论文 管理类论文 教育类论文 农林类论文 新闻类论文 建筑类论文 文艺类论文 法学类论文
论文范文

Adaptive compressive sensing algorithm for video acquisition using a single-pixel camera
时间:2017-05-23 08:58   来源:未知   作者:admin   点击:
       Abstract. We propose a method to acquire compressed measurements for efficient video reconstruction using a single-pixel camera.The method is suitable for implementation using a single-pixel detector,along with a digital micromirror device or other types of spatial light modulators. Conventional implementations of single-pixel cameras are able to spatially compress the signal, but the compressed measurements make it difficult to exploit temporal redundancies directly. Moreover, a single-pixel camera needs to make measurements in a sequential manner before the scene changes, making it inefficient for video imaging. We discuss a measurement scheme that exploits sparsity along the time axis for video imaging. After acquiring all measurements required for the first frame, measurements are acquired only from the areas that change in subsequent frames. We segment the first frame, detect the magnitude and direction of change for each segment, and acquire compressed measurements for the changing segments in the predicted direction. Next, we compare the reconstruction results for a few test sequences with existing techniques and demonstrate the practical utility of the scheme.
1 Introduction
       The compressed sensing (CS) framework for image acquisition exploits the inherent properties of a signal to reduce the number of samples required for reconstruction. Most signals are sparse in some domains and require fewer samples than specified by the Nyquist criterion to fully recover the signal.Unlike conventional Nyquist sampling, CS uses the sparsity information in the signal and acquires measurements in the domain in which the signal is sparse. The sampling matrices or projections are carefully designed to acquire maximum information from the signal. Random projections have been proven to recover the signal with the least number of samples above the minimum bounds, and with high probability. Some deterministic sampling matrices have also been investigated and proven efficient for a full recovery of the signal.
       Researchers have come up with many imaging architectures for CS implementation employing spatial light modulators (SLMs). These include the Rice single-pixel camera,which uses a digital mirror device (DMD),1 coded apertures, and CMOS SLMs to exploit the sparsity of the signal in the spatial domain. These architectures acquire compressive measurements in the spatial domain, but due to the sequential nature of measurement acquisition, they are not efficient for video. Most CS architectures use a single detector that creates a temporal bottleneck for applications requiring fast sampling rates. One way to reduce the effect of this bottleneck is to take multiple measurements at one instance by increasing the number of sensors. Each sensor will require a respective DMD, making an array of DMDs that is not a feasible solution in terms of cost and space. Another cost-efficient way is to exploit redundancies or its complement,temporal sparsity, in a video sequence.
       In order to exploit temporal sparsity in a video, weintuitively think of changes between frames. In many video sequences, change is sparse along the time axis. Many methods have been published for video sensing and reconstruction that exploit change sparsity, most of which acquire measurements for several frames and reconstruct them subsequently using Fourier or wavelet domain sparsity.One direct method is to acquire measurements for each frame separately. To minimize motion blur, direct acquisition requires the scene to be static before measurements are made for each frame, which is not practical in most cases. Another approach adopted is three-dimensional wavelet reconstruction.1 Samples for a group of frames are acquired and a wavelet basis is used for recovering all frames in the group at once. This method cannot be used for real time video streaming without incurring latency and delay that may significantly affect performance in many situations.Frame differencing has been used where the differences between consecutive frames are compressively measured, reconstructed, and added to the previous frame. This method not only accumulates residual error, but the mean square error (MSE) increases significantly when the difference is not sparse, as in the case of large changes in the scene. Another approach is based on modeling specific video sequence evolution as a linear dynamical system (LDS). This approach reduces the required samples for reconstruction considerably but is restricted to videos possessing an LDS representation, which is possible for only a few specific sequences. Some works based on block-based compressive sensing (CS), such as block-based compressive sensing with smooth projection Landweber reconstruction (BCS-SPL), divide the frame into nonoverlapping blocks and process each block separately. The basic technique splits the processing into smaller blocks and combines the reconstruction for the final result.6 This method does not take into account the temporal redundancies in a video.
       More advanced techniques based on BCS-SPL take into account motion estimation parameters to aid the econstruction process. Motion estimation/motion compensation BCS (ME/MS-BCS) selects a group of pictures (GOP) for estimating motion vectors and reconstruct the GOP using this information. This improves the subrate performance but incurs an undesirable time delay in addition to increasing reconstruction complexity.7–10 One other approach is adaptive block-based compressive sensing in which a frame is divided into a specific number of blocks and each block is assigned measurements based on changes and texture.This approach accumulates residual error and gives block artifacts after recovery.


推荐期刊 论文范文 学术会议资讯 论文写作 发表流程 期刊征稿 常见问题 网站通告
论文快速发表网(www.k-fabiao.com)版权所有,专业学术期刊论文发表网站
代理杂志社征稿、杂志投稿、省级期刊、国家级期刊、SCI/EI期刊、学术论文发表,中国学术期刊网全文收录