![]() ![]() ![]()
EI Compendex Source List(2022年1月)
EI Compendex Source List(2020年1月)
EI Compendex Source List(2019年5月)
EI Compendex Source List(2018年9月)
EI Compendex Source List(2018年5月)
EI Compendex Source List(2018年1月)
中国科学引文数据库来源期刊列
CSSCI(2017-2018)及扩展期刊目录
2017年4月7日EI检索目录(最新)
2017年3月EI检索目录
最新公布北大中文核心期刊目录
SCI期刊(含影响因子)
![]() ![]() ![]()
论文范文
1. Introduction Global energy demand is predicted to grow by 37 percent by the year 2040 [1]. During the same period, the distribution of energy demand will change dramatically, triggered by faster-growing economies and rising consumption in Asia, Africa, the Middle East, and Latin America. To meet this demand, the consumption of petroleum and other liquid fuels is projected to increase from 3.78 billion gallons per day in 2012 to 5.08 billion by 2040 [2]. However, increasing risks of environmental pollution and climate change due to production and use of fossil fuels necessitate the quest for alternative energy sources [3]. Production of biofuels and other chemicals from lignocellulosic biomass has been impeded by biomass recalcitrance (the resistance of plant cell walls to enzymatic deconstruction) largely due to the presence of highly heterogenic polymer lignin, which is a major barrier to cost-effective conversion of biomass to biofuels and useful chemicals [4]. Lignin consists of three major phenylpropanoid units, syringyl, guaiacyl, and hydroxyphenyl units, and can interlock with cellulose and hemicelluloses, limiting the accessibility of these polysaccharides to cellulase and hemicellulase enzymes, respectively [5–7]. Over a period of decades, several pretreatment technologies have been developed to break down lignin in the biomass and increase conversion efficiency [8]. However, these technologies have various limitations and are not being commercialized at the pace needed to address the short-term demand for biofuels. In this context, alternative feedstocks with enhanced carbohydrate yield that are easily converted to fuels using current technology have great potential. Advances in genetic engineering have greatly contributed to the improvement of desirable traits including enhanced biomass yields, polysaccharide content, and modification of the cell wall composition to reduce pretreatment costs [9]. For example, an increase in starch content has been achieved in transgenic potato [10] and cassava [11] tubers overexpressing the Escherichia coli ADP-glucose pyrophosphorylase (AGPase or glgC, EC 2.7.7.27), which catalyzes the first dedicated and rate-limiting step in starch biosynthesis. The glgC gene encodes a major enzyme controlling starch biosynthesis, catalyzing the conversion of glucose 1-phosphate and ATP to ADP-glucose (ADPGlc) and inorganic pyrophosphate, with the ADPGlc subsequently used by starch...... ![]() |
|